Searching for a Numerical Model for Prediction of Pressure-Swirl Atomizer Internal Flow

نویسندگان

چکیده

Numerical prediction of discharge parameters allows design a pressure-swirl atomizer in fast and cheap manner, yet it must provide reliable results for wide range geometries operating regimes. Many authors have used different numerical setups similar cases often concluded opposite suggestions on setup. This paper compares 2D (two-dimensional) axisymmetric, 3D (three-dimensional) periodic full models estimation the internal flow characteristics atomizer. The computed are compared with experimental data terms spray cone angle, coefficient (CD), air-core dimensions, velocity profiles. three-component was experimentally measured using Laser Doppler Anemometry scaled transparent model visualized by high-speed camera backlit illumination. Tested conditions covered Reynolds numbers within inlet ports, Re = 1000, 2000, 4000. treated as both steady transient flow. solver laminar several turbulence models, represented k-ε k-ω Stress (RSM) Large Eddy Simulation (LES). capable closely predicting CD, dimensions profiles simulations. LES performed similarly to low slightly superior two-equation were sensitive proper solving near wall not accurate Re. Surprisingly, RSM produced worst results.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of Internal Flow in a Large-scale Pressure-swirl Atomizer

This work is a continuation of experimental and computational studies of the internal flow field of a large-scale Danfoss atomizer presented at an earlier ILASS conference [1,2]. Fluent 6.1 is used to simulate the flow through the large-scale atomizer. The two-phase flow is modeled using three approaches: 1) a volume of fluid (VOF) method using a laminar flow assumption, 2) a VOF method using l...

متن کامل

investigating the feasibility of a proposed model for geometric design of deployable arch structures

deployable scissor type structures are composed of the so-called scissor-like elements (sles), which are connected to each other at an intermediate point through a pivotal connection and allow them to be folded into a compact bundle for storage or transport. several sles are connected to each other in order to form units with regular polygonal plan views. the sides and radii of the polygons are...

A New Mathematical Model for the Prediction of Internal Recirculation in Impinging Streams Reactors

A mathematical model for the prediction of internal recirculation of complex impinging stream reactors has been presented. The model constitutes a repetition of a series of ideal plug flow reactors and CSTR reactors with recirculation. The simplicity of the repeating motif allows for the derivation of an algebraic relation of the whole system using the Laplace transform. An impinging stream...

متن کامل

the use of appropriate madm model for ranking the vendors of mci equipments using fuzzy approach

abstract nowadays, the science of decision making has been paid to more attention due to the complexity of the problems of suppliers selection. as known, one of the efficient tools in economic and human resources development is the extension of communication networks in developing countries. so, the proper selection of suppliers of tc equipments is of concern very much. in this study, a ...

15 صفحه اول

Numerical Simulations of Isothermal Flow in a Swirl Burner

In this paper, the non-reacting flow in a swirl burner is studied using large eddy simulation. The configuration consists of two unconfined coannular jets at a Reynolds number of 81,500. The flow is characterized by a Swirl number of 0.93. Two cases are studied in the paper differing with respect to the axial location of the inner pilot jet. It was observed in a companion experiment (Bender and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied sciences

سال: 2022

ISSN: ['2076-3417']

DOI: https://doi.org/10.3390/app12136357